АВТ
Язык:

Дистанционный практикум по программированию

Задачи Online статус Соревнования
Новости Справка СДО
 
Здравствуйте, Гость! Войдите с паролем или зарегистрируйтесь.

1144. Верстовые столбы

Ограничение времени: 1 сек.
Ограничение памяти:65536 КБайт
Баллы:100
Статистика Послать на проверку Задачу добавил debug

Условия с турнира школьников на русском языке

The longest road of the Fairy Kingdom has n milestones. A long-established tradition defines a specific color for milestones in each region, with a total of m colors in the kingdom. There is a map describing all milestones and their colors.

A number of painter teams are responsible for milestone maintenance and painting. Typically, each team is assigned a road section spanning from milestone #l to milestone #r. When optimizing the assignments, the supervisor often has to determine how many different colors it will take to paint all milestones in the section l…r.

Example. Suppose there are five milestones #1, #2, #3, #4, #5 to be painted with colors 1, 2, 3, 2, 1, respectively. In this case, only two different paints are necessary for milestones 2…4: color 2 for milestones #2 and #4, and color 3 for milestone #3.

Write a program that, given a map, will be able to handle multiple requests of the kind described above.

 

Limitations

1 <= n <= 10 000; 1<= m <= 255; 1 <= li <= ri <= n; 1 <= k <= 100 000.

 

Input

The first line contains two integers, n and k – the number of milestones and the number of requests, respectively. The second line consists of n integers separated by spaces and defines the sequence of colors for milestones from #1 to #n. The following k lines contain pairs of integers, one pair per line. Each pair consists of two numbers – li and ri and defines a range of milestones for request i.

 

Output

The output file should contain k integers separated by line breaks. Result number i should present the result of the i-th request, i. e. the number of colors required to paint all milestones in the road section liri.

 

Example

Input

Output

5 3

1 2 3 2 1

1 5

1 3

2 4

3

3

2

 

All Rybinsk-2012 problems (in PDF)


Статистика Послать на проверку Обсуждение задачи Автор/источник:
Задачи с соревнований и сборов / Чемпионат мира по программированию (ICPC) / Рыбинск-2012 /
1143. G - Функция 1144. 1145. I - Dunno 1146. J - Компьютерная сеть 1147. K - Треугольники
Задачи с соревнований и сборов / Чемпионат мира по программированию (ICPC) / Школьники-Рыбинск-2012 /
1139. E - Последовательность. 1144. 1141. G - Головоломка 1147. H - Треугольники 1146. I - Компьютерная сеть
 
время генерации 0.172 сек.
© Copyright ВоГУ, АВТ, Носов Д.А., Андрианов И.А.