
ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem A. Asteroids
Input file: asteroids.in
Output file: asteroids.out

Association of Collision Management (ACM) is planning to perform the controlled collision of two as-
teroids. The asteroids will be slowly brought together and collided at negligible speed. ACM expects
asteroids to get attached to each other and form a stable object.

Each asteroid has the form of a convex polyhedron. To increase the chances of success of the experiment
ACM wants to bring asteroids together in such manner that their centers of mass are as close as possible.
To achieve this, ACM operators can rotate the asteroids and move them independently before bringing
them together.

Help ACM to find out what minimal distance between centers of mass can be achieved.

For the purpose of calculating center of mass both asteroids are considered to have constant density.

Input
Input file contains two descriptions of convex polyhedra.

The first line of each description contains integer number n — the number of vertices of the polyhedron
(4 ≤ n ≤ 60). The following n lines contain three integer numbers xi, yi, zi each — the coordinates of
the polyhedron vertices (−104 ≤ xi, yi, zi ≤ 104). It is guaranteed that the given points are vertices of a
convex polyhedron, in particular no point belongs to the convex hull of other points. Each polyhedron is
non-degenerate.

The two given polyhedra have no common points.

Output
Output one floating point number — the minimal distance between centers of mass of the asteroids that
can be achieved. Your answer must be accurate up to 10−5.

Sample input and output

asteroids.in asteroids.out
8
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
5
0 0 5
1 0 6
-1 0 6
0 1 6
0 -1 6

0.75

Page 1 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem B. Business Center
Input file: business.in
Output file: business.out

International Cyber Police Corporation (ICPC) had built a new mega-tall business center to host its
headquarters and to lease some space for extra profit. It has so many floors, that it is impractical to have
a separate button in each of its m elevator cars for each individual floor. Instead, each elevator car has
just two buttons. One button in i-th elevator car makes it move up ui floors, the other makes it move
down di floors. The business center is so high, that we can ignore its height for this problem (you will
never reach the top floor), but you cannot go below the ground floor. All floors are numbered by integer
numbers starting from zero, zero being the ground floor.

You start on the ground floor of the business center. You have to choose one elevator car out of m to
ride on. You cannot switch elevators cars after that. What is the lowest floor above the ground floor you
can get to after you press elevator car buttons exactly n times?

Input
The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 1 000 000, 1 ≤ m ≤ 2 000) —
the number of button presses and the number of elevator cars to choose from. The following m lines
describe elevator cars. Each line contains two integer numbers ui and di (1 ≤ ui, di ≤ 1 000).

Output
Write to the output file a single positive integer number — the number of the lowest floor above ground
floor that can be reached by one of m elevators after pressing its buttons exactly n times.

Sample input and output

business.in business.out
10 3
15 12
15 4
7 12

13

Page 2 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem C. Central Element
Input file: standard input
Output file: standard output

This is an interactive problem.

There is a permutation P of numbers 1 through n, not known to you, P = 〈P1, P2, ..., Pn〉. You can
ask the following type of questions: Given three distinct positions i, j and k, which of Pi, Pj and Pk is
central? Element is central if it is neither minimal nor maximal.

For example, if the permutation is 〈2, 1, 4, 3〉, and you ask about positions 1, 2, and 3, you receive 2,
because 2 is the central element of the set {P1, P2, P3} = {2, 1, 4}. Note that you don’t get the information
at which position among 1, 2, and 3 it is located.

Your task is to find the permutation P . Actually, for each permutation P there is a set S(P) of permuta-
tions that cannot be distinguished from P using the allowed questions. You must find any permutation
from this set.

Interaction protocol
First, your program must read from the standard input one line with the integer n, the size of the
permutation.

The program must write to the standard output one line with three positions that you ask a question
about and wait for a line in the standard input with a response, then write next question and read next
response, and so on until you know the permutation P up to S(P).

Once you know the answer, output one line with the word “OK” and the permutation P .

Input
The first line of the standard input contains n, the size of the permutation (3 ≤ n ≤ 200).

Each of the next lines of the standard input contains response to your question — the number that is
central among the numbers at the asked positions.

Output
When you’re asking questions, each line of the standard output should contain three different integers
from the range of 1 to n, space-separated. You can ask at most 2 000 questions.

When you’re stating the answer, the line of the standard output should contain the word “OK”, and the
numbers P1, P2, . . . , Pn, all space-separated. After printing this line your program must exit.

You must flush standard output after printing each line.

Sample input and output

standard input standard output
4
2
3
2
3

1 2 3
2 3 4
1 2 4
1 3 4
OK 2 1 4 3

Page 3 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem D. Database
Input file: database.in
Output file: database.out

Peter studies the theory of relational databases. Table in the relational database consists of values that
are arranged in rows and columns.

There are different normal forms that database may adhere to. Normal forms are designed to minimize
the redundancy of data in the database. For example, a database table for a library might have a row
for each book and columns for book name, book author, and author’s email.

If the same author wrote several books, then this representation is clearly redundant. To formally define
this kind of redundancy Peter has introduced his own normal form. A table is in Peter’s Normal Form
(PNF) if and only if there is no pair of rows and a pair of columns such that the values in the corresponding
columns are the same for both rows.

How to compete in ACM ICPC Peter peter@neerc.ifmo.ru
How to win ACM ICPC Michael michael@neerc.ifmo.ru
Notes from ACM ICPC champion Michael michael@neerc.ifmo.ru

The above table is clearly not in PNF, since values for 2rd and 3rd columns repeat in 2nd and 3rd rows.
However, if we introduce unique author identifier and split this table into two tables — one containing
book name and author id, and the other containing book id, author name, and author email, then both
resulting tables will be in PNF.

How to compete in ACM ICPC 1
How to win ACM ICPC 2
Notes from ACM ICPC champion 2

1 Peter peter@neerc.ifmo.ru
2 Michael michael@neerc.ifmo.ru

Given a table your task is to figure out whether it is in PNF or not.

Input
The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 10 000, 1 ≤ m ≤ 10), the
number of rows and columns in the table. The following n lines contain table rows. Each row has m
column values separated by commas. Column values consist of ASCII characters from space (ASCII code
32) to tilde (ASCII code 126) with the exception of comma (ASCII code 44). Values are not empty and
have no leading and trailing spaces. Each row has at most 80 characters (including separating commas).

Output
If the table is in PNF write to the output file a single word “YES” (without quotes). If the table is not in
PNF, then write three lines. On the first line write a single word “NO” (without quotes). On the second
line write two integer row numbers r1 and r2 (1 ≤ r1, r2 ≤ n, r1 6= r2), on the third line write two integer
column numbers c1 and c2 (1 ≤ c1, c2 ≤ m, c1 6= c2), so that values in columns c1 and c2 are the same
in rows r1 and r2.

Sample input and output
database.in database.out

3 3
How to compete in ACM ICPC,Peter,peter@neerc.ifmo.ru
How to win ACM ICPC,Michael,michael@neerc.ifmo.ru
Notes from ACM ICPC champion,Michael,michael@neerc.ifmo.ru

NO
2 3
2 3

2 3
1,Peter,peter@neerc.ifmo.ru
2,Michael,michael@neerc.ifmo.ru

YES

Page 4 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem E. Exclusive Access 2
Input file: exclusive.in
Output file: exclusive.out

Having studied mutual exclusion protocols in the previous year’s competition you are now facing a more
challenging problem. You have a big enterprise system with a number concurrently running processes.
The system has several resources — databases, message queues, etc. Each concurrent process works with
two resources at a time. For example, one process might copy a job from a particular database into the
message queue, the other process might take a job from the message queue, perform the job, and then
put the result into some other message queue, etc.

All resources are protected from concurrent access by mutual exclusion protocols also known as locks.
For example, to access a particular database process acquires the lock for this database, then performs
its work, then releases the lock. No two processes can hold the same lock at the same time (that is the
property of mutual exclusion). Thus, the process that tries to acquire a lock waits if that lock is taken
by some other process.

The main loop of the process that works with resources P and Q looks like this:

loop forever
DoSomeNonCriticalWork()
P.lock()
Q.lock()
WorkWithResourcesPandQ()
Q.unlock()
P.unlock()

end loop

The order in which locks for resources P and Q are taken is important. Consider a case where process c
had acquired lock P with P.lock() and is waiting for lock Q in Q.lock(). It means that lock Q is taken
by some other process d. If the process d is working (not waiting), then we say that there is a wait chain
of length 1. If d had acquired lock Q and is waiting for another lock R, which is acquired by a working
process e, then we say that there is a wait chain of length 2, etc. If any process in this wait chain waits
for lock P that is already taken by process c, then we say that the wait chain has infinite length and the
system deadlocks.

For this problem, we are interested only in alternating wait chains where processes hold their first locks
and wait for the second ones. Formally:

Alternating wait chain of length n (n ≥ 0) is an alternating sequence of resources Ri

(0 ≤ i ≤ n + 1) and distinct processes ci (0 ≤ i ≤ n): R0 c0 R1 c1 ... Rn cn Rn+1, where
process ci acquires locks for resources Ri and Ri+1 in this order. Alternating wait chain is a
deadlock when R0 = Rn+1.

You are given a set of resources each process works with. Your task is to decide the order in which each
process has to acquire its resource locks, so that the system never deadlocks and the maximum length of
any possible alternating wait chain is minimized.

Input
The first line of the input file contains a single integer n (1 ≤ n ≤ 100) — the number of processes.

The following n lines describe resources that each process needs. Each resource is designated with an
uppercase English letter from L to Z, so there are at most 15 resources. Each line describing process
contains two different resources separated by a space.

Page 5 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Output
On first line of the output file write a singe integer number m — the minimally possible length of the
maximal alternating wait chain.

Then write n lines — one line per process. On each line write two resources in the order they should be
taken by the corresponding process to ensure this minimal length of the maximal alternating wait chain.
Separate resources on a line by a space. If there are multiple satisfying orderings, then write any of them.
The order of the processes in the output should correspond to their order in the input.

Sample input and output

exclusive.in exclusive.out
2
P Q
R S

0
P Q
R S

6
P Q
Q R
R S
S T
T U
U P

0
P Q
R Q
R S
T S
T U
P U

4
P Q
P Q
P Q
P Q

0
P Q
P Q
P Q
P Q

3
P Q
Q R
R P

1
P Q
Q R
P R

6
P Q
Q S
S R
R P
P S
R Q

2
P Q
Q S
R S
P R
P S
R Q

Page 6 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem F. Funny Language

Input file: funny.in
Output file: funny.out

There is a well know game with words. Given a word you have to write as many other words as possible
using the letters from the given word. If the letter repeats multiple times in the original word, you can
use it up to as many times in the new words. The order of letters in the original word does not matter.
For example, given the word CONTEST you can write NOTE, NET, ON, TEST, SET, etc.

Now you are in charge of writing a new dictionary. Your task is to sneak n new words into it. You know
in advance m words Wi (1 ≤ i ≤ m) that you will have to play a game with and you need to figure out
which new n words to add to the dictionary to maximize the total number of words you can write out of
these m words.

More formally, find such a set of nonempty words S where |S| = n, Wi /∈ S for any i, and
∑

1≤i≤m |Si|
is maximal, where Si ⊂ S is the set of words that can be written using letters from Wi.

Input
The first line of the input file contains two integer numbers n (1 ≤ n ≤ 100) — the number of new words
you can add to the dictionary and m (1 ≤ m ≤ 1 000) — the number of words you will play the game
with. The following m lines contain original words. Each word consists of at most 100 uppercase letters
from A to Z.

Output
Write to the output file n lines with a new word on a line.

Sample input and output

funny.in funny.out
3 5
A
ACM
ICPC
CONTEST
NEERC

C
CN
E

Page 7 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem G. Garbling Game

Input file: garbling.in
Output file: garbling.out

Pavel had invented a new game with a matrix of integer numbers. He takes r × c matrix with r rows
and c columns that is filled with numbers from 1 to rc left to right and top to bottom (1 is written in
the upper-left corner, rc is written in the lower-right corner). Then he starts to rearrange the numbers
is the matrix by following the rules that are explained below and writes down a sequence of numbers on
a separate piece of paper. He calls it garbling of the matrix.

The rules of rearrangement are defined by garbling map that is (r − 1) × (c − 1) matrix of letters L, R,
and N. Initial 4× 5 matrix and the sample 3× 4 garbling map for it are shown below.

(1) 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

L R L R
N L L R
L N N L

Pavel garbles the matrix in a series of turns. On his first turn Pavel takes the number in the first row
and the first column (it is put in parenthesis on the above picture for clarity) and writes it down.

Having written down the number he performs one garbling turn:

Pavel looks at the letter in the garbling map that corresponds to the position of the number he had just
written down (one the first turn it is the letter in the upper-left corner). Depending on the letter in
the garbling map the 2× 2 block of the matrix whose upper-left corner contains the number he had just
written (highlighted in the above picture) is rearranged in the following way:

• R — the block is rotated clockwise.

• L — the block is rotated counterclockwise.

• N — Pavel does not change the matrix on this turn.

On the second turn Pavel takes the number in the first row and second column, writes it down, and
performs the garbling turn, and so on. In c − 1 turns he finishes the first row and moves to the second
row and so on he proceeds left to right and top to bottom. In (r − 1)(c− 1) turns he had written down
(r−1)(c−1) numbers and garbled the whole matrix, so he starts again in the upper-left corner continuing
garbling the matrix from left to right and top to bottom.

The matrices below show the effect of the first four turns with the sample garbling map.

2 (7) 3 4 5
1 6 8 9 10
11 12 13 14 15
16 17 18 19 20

2 6 (7) 4 5
1 8 3 9 10
11 12 13 14 15
16 17 18 19 20

2 6 4 (9) 5
1 8 7 3 10
11 12 13 14 15
16 17 18 19 20

2 6 4 3 9
(1) 8 7 10 5
11 12 13 14 15
16 17 18 19 20

The following sequence of numbers is written down in the first 4 turns: 1 7 7 9. On 5th turn the number
from the second row and the first column is written, but the matrix remains unchanged, since the second
row and the first column of the garbling map contains N. In six turns Pavel gets 1 7 7 9 1 8.

Given the garbling map and the number of moves Pavel makes in this game, find out how many times
each number gets written down by Pavel. You need to provide the answer modulo 105.

Input
The first line of the input file contains three integer numbers — r, c, and n, where r, c (2 ≤ r, c ≤ 300)
are the dimensions of the initial matrix, n (0 ≤ n < 10100) is the number of turns Pavel makes.

Page 8 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

The following r − 1 lines contain garbling map with c− 1 characters R, L, or N on a line.

Output
Write to the output file rc lines with one integer number per line. On i-th line write the number of times
number i gets written down by Pavel modulo 105 while he makes his n turns.

Sample input and output

garbling.in garbling.out
4 5 6
LRLR
NLLR
LNNL

2
0
0
0
0
0
2
1
1
0
0
0
0
0
0
0
0
0
0
0

4 5 666666
LRLR
NLLR
LNNL

37038
37038
0
0
30864
37036
11112
30864
30864
30864
30864
30864
11110
30865
18519
30864
30864
0
18518
18518

Page 9 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem H. Headshot
Input file: headshot.in
Output file: headshot.out

You have a revolver gun with a cylinder that has n chambers. Chambers are located in a circle on a
cylinder. Each chamber can be empty or can contain a round. One chamber is aligned with the gun’s
barrel. When trigger of the gun is pulled, the gun’s cylinder rotates, aligning the next chamber with the
barrel, hammer strikes the round, making a shot by firing a bullet through the barrel. If the chamber is
empty when the hammer strikes it, then there is no shot but just a “click”.

You have found a use for this gun. You are playing Russian Roulette with your friend. Your friend loads
rounds into some chambers, randomly rotates the cylinder, aligning a random chamber with a gun’s
barrel, puts the gun to his head and pulls the trigger. You hear “click” and nothing else — the chamber
was empty and the gun did not shoot.

Now it is your turn to put the gun to your head and pull the trigger. You have a choice. You can either
pull the trigger right away or you can randomly rotate the gun’s cylinder and then pull the trigger. What
should you choose to maximize the chances of your survival?

Input
The input file contains a single line with a string of n digits “0” and “1” (2 ≤ n ≤ 100). This line of
digits represents the pattern of rounds that were loaded into the gun’s chambers. “0” represent an empty
chamber, “1” represent a loaded one. In this representation, when cylinder rotates before a shot, the
next chamber to the right gets aligned with the barrel for a shot. Since the chambers are actually located
on a circle, the first chamber in this string follows the last one. There is at least one “0” in this string.

Output
Write to the output file one of the following words (without quotes):

• “SHOOT” — if pulling the trigger right away makes you less likely to be actually shot in the head
with the bullet (more likely that the chamber will be empty).

• “ROTATE” — if randomly rotating the cylinder before pulling the trigger makes you less likely to be
actually shot in the head with the bullet (more likely that the chamber will be empty).

• “EQUAL” — if both of the above choices are equal in terms of probability of being shot.

Sample input and output

headshot.in headshot.out
0011 EQUAL

0111 ROTATE

000111 SHOOT

Page 10 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem I. Inspection

Input file: inspection.in
Output file: inspection.out

You are in charge of a team that inspects a new ski resort. A ski resort is situated on several mountains
and consists of a number of slopes. Slopes are connected with each other, forking and joining. A map of
the ski resort is represented as an acyclic directed graph. Nodes of the graph represent different points in
ski resort and edges of the graph represent slopes between the points, with the direction of edges going
downwards.

Your team has to inspect each slope of the ski resort. Ski lifts on this resort are not open yet, but you
have a helicopter. In one flight the helicopter can drop one person into any point of the resort. From the
drop off point the person can ski down the slopes, inspecting each slope as they ski. It is fine to inspect
the same slope multiple times, but you have to minimize the usage of the helicopter. So, you have to
figure out how to inspect all the slopes with the fewest number of helicopter flights.

Input
The first line of the input file contains a single integer number n (2 ≤ n ≤ 100) — the number of points in
the ski resort. The following n lines of the input file describe each point of the ski resort numbered from
1 to n. Each line starts with a single integer number mi (0 ≤ mi < n for i from 1 to n) and is followed
by mi integer numbers aij separated by spaces. All aij are distinct for each i and each aij (1 ≤ aij ≤ n,
aij 6= i) represents a slope going downwards from point i to point aij . Each point in the resort has at
least one slope connected to it.

Output
On the first line of the output file write a single integer number k — the minimal number of helicopter
flights that are needed to inspect all slopes. Then write k lines that describe inspection routes for each
helicopter flight. Each route shall start with single integer number from 1 to n — the number of the drop
off point for the helicopter flight, followed by the numbers of points that will be visited during inspection
in the corresponding order as the slopes are inspected going downwards. Numbers on a line shall be
separated by spaces. You can write routes in any order.

Sample input and output
inspection.in inspection.out

8
1 3
1 7
2 4 5
1 8
1 8
0
2 6 5
0

4
1 3 4 8
1 3 5 8
2 7 6
7 5

Page 11 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem J. Java Certification
Input file: javacert.in
Output file: javacert.out

You have just completed Java Certification exam that contained n questions. You have a score card that
explains your performance. The example of the scorecard is given below.

You have correctly answered 78 questions out of 87.

Basic Concepts 100%
Declarations 100%
Expressions 83%
Classes and Interfaces 92%
Multithreading 75%
Collections 93%

From this scorecard you can infer that the questions are broken down into m categories (in the above
example m = 6). Each category contains ni questions (1 ≤ ni ≤ n), so that

∑
1≤i≤m ni = n. You know

that you have correctly answered k questions out of n (in the above example k = 78 and n = 87), so you
can easily find the number of incorrect answers w = n− k (in the above example w = 9).

You do remember several questions that you were unsure about and you can guess what category they
belong to. To figure out if your answers on those questions were right or wrong, you really want to know
how many incorrect answers you have given in each category.

Let wi (0 ≤ wi ≤ ni) be the number of incorrect answers in i-th category,
∑

1≤i≤m wi = w. From the
scorecard you know the percentage of correct answers in each category. That is, for each i from 1 to m
you know the value of 100(ni − wi)/ni rounded to the nearest integer. The value with a fractional part
of 0.5 is rounded to the nearest even integer.

It may not be possible to uniquely find the valid values for wi. However, you guess that the questions
are broken down into categories in a mostly uniform manner. You have to find the valid values of wi and
ni, so that to minimize the difference between the maximum value of ni and the minimum value of ni.
If there are still multiple possible values for wi and ni, then find any of them.

Input
The first line of the input file contains three integer numbers — k, n, and m, where k (0 ≤ k ≤ n)
is the number of correctly answered questions, n (1 ≤ n ≤ 100) is the total number of questions, m
(1 ≤ m ≤ 10) is the number of question categories. The following m lines of the input file contain one
integer number from 0 to 100 (inclusive) on a line — percentages of the number of the correct answers
in each category. The input file always corresponds to some valid set of wi and ni.

Output
Write to the output file m lines with two integer numbers wi and ni on a line, separated by a space — the
number of incorrect answers and the total number of questions in each category, satisfying constraints as
given in the problem statement.

Sample input and output
javacert.in javacert.out

78 87 6
100
100
83
92
75
93

0 13
0 13
3 18
1 13
4 16
1 14

Page 12 of 13

ACM ICPC 2009–2010, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Tbilisi, November 11, 2009

Problem K. K-equivalence

Input file: kequiv.in
Output file: kequiv.out

Consider a set K of positive integers.

Let p and q be two non-zero decimal digits. Call them K-equivalent if the following condition applies:

For every n ∈ K, if you replace one digit p with q or one digit q with p in the decimal notation
of n then the resulting number will be an element of K.

For example, when K is the set of integers divisible by 3, the digits 1, 4, and 7 are K-equivalent. Indeed,
replacing a 1 with a 4 in the decimal notation of a number never changes its divisibility by 3.

It can be seen that K-equivalence is an equivalence relation (it is reflexive, symmetric and transitive).

You are given a finite set K in form of a union of disjoint finite intervals of positive integers.

Your task is to find the equivalence classes of digits 1 to 9.

Input
The first line contains n, the number of intervals composing the set K (1 ≤ n ≤ 10 000).

Each of the next n lines contains two positive integers ai and bi that describe the interval [ai, bi] (i. e.
the set of positive integers between ai and bi, inclusive), where 1 ≤ ai ≤ bi ≤ 1018. Also, for i ∈ [2..n]:
ai ≥ bi−1 + 2.

Output
Represent each equivalence class as a concatenation of its elements, in ascending order.

Output all the equivalence classes of digits 1 to 9, one at a line, sorted lexicographically.

Sample input and output

kequiv.in kequiv.out
1
1 566

1234
5
6
789

1
30 75

12
345
6
7
89

Page 13 of 13

