
ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem A. Aerodynamics

Input file: aerodynamics.in
Output file: aerodynamics.out

Bill is working in a secret laboratory. He is developing missiles for national security projects. Bill is the
head of the aerodynamics department.

One surprising fact of aerodynamics is called Whitcomb area rule. An object flying at high-subsonic
speeds develops local supersonic airflows and the resulting shock waves create the effect called wave drag.
Wave drag does not depend on the exact form of the object, but rather on its cross-sectional profile.

Consider a coordinate system with OZ axis pointing in the direction of object’s motion. Denote the area
of a section of the object by a plane z = z0 as S(z0). Cross-sectional profile of the object is a function
S that maps z0 to S(z0). There is a perfect aerodynamic shape called Sears-Haack body. The closer
cross-sectional profile of an object to the cross-sectional profile of Sears-Haack body, the less wave drag
it introduces. That is an essence of Whitcomb area rule.

Bill’s department makes a lot of computer simulations to study missile’s aerodynamic properties before
it is even built. To approximate missile’s cross-sectional profile one takes samples of S(z0) for integer
arguments z0 from zmin to zmax.

z

x

y

1

2

3

4

5

6

7

8

9

Your task is to find the area S(z0) for each integer z0 from zmin to zmax, inclusive, given the description
of the missile. The description of the missile is given to you as a set of points. The missile is the minimal
convex solid containing all the given points. It is guaranteed that there are four points that do not belong
to the same plane.

Input
The first line of the input file contains three integer numbers: n, zmin and zmax (4 ≤ n ≤ 100,
0 ≤ zmin ≤ zmax ≤ 100). The following n lines contain three integer numbers each: x, y, and z co-
ordinates of the given points. All coordinates do not exceed 100 by their absolute values. No two points
coincide. There are four points that do not belong to the same plane.

Page 1 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Output
For each integer z0 from zmin to zmax, inclusive, output one floating point number: the area S(z0). The
area must be precise to at least 5 digits after decimal point.

Sample input and output

aerodynamics.in aerodynamics.out
9 0 5
0 0 5
-3 0 2
0 -1 2
3 0 2
0 1 2
2 2 0
2 -2 0
-2 -2 0
-2 2 0

16.00000
14.92000
10.08000
4.48000
1.12000
0.00000

Page 2 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem B. Blind Walk
Input file: standard input
Output file: standard output

This is an interactive problem.

Your task is to write a program that controls a robot which blindly walks through a maze. The maze is
n×m (1 ≤ n, m ≤ 30) rectangular grid that consists of square cells. Each cell is either empty or blocked.
All cells on the border of the maze are blocked. The robot starts in an empty cell. It can move south,
west, north, or east to an adjacent empty cell. The robot is blind and has only bump sensors, so when
it attempts to move it can either succeed or bump into blocked cell and fail.

The robot has to visit all empty cells in the maze. All cells are guaranteed to be reachable.

The picture shows sample maze where blocked cells are, filled and initial robot’s location is designated
with a circle.

Interaction protocol
The program must write to the standard output one line with robot’s action and wait for a line in the
standard input with a response, then write next action and read next response, and so on until all empty
cells in the maze had been visited. The program must exit only when all cells have been visited. Empty
cells may be visited multiple times. It is acceptable to move even after all cells had been visited.

Output
Each line of the standard output represents robot’s action. It is one of the following five strings: SOUTH,
WEST, NORTH, EAST, or DONE. DONE must be printed when the robot has visited all empty cells. After
printing DONE your program must exit. You must flush standard output after printing each action.

Input
Each line of the standard input represents response on robot’s action. It is either a string EMPTY if
robot has successfully moved in the specified direction to an adjacent cell or a string BLOCKED if robot’s
movement has failed because the corresponding adjacent cell was blocked.

Sample input and output
standard output standard input

NORTH
EAST
SOUTH
EAST
SOUTH
WEST
SOUTH
WEST
NORTH
WEST
WEST
NORTH
EAST
NORTH
DONE

BLOCKED
BLOCKED
EMPTY
BLOCKED
BLOCKED
EMPTY
BLOCKED
BLOCKED
EMPTY
EMPTY
BLOCKED
BLOCKED
EMPTY
BLOCKED

Page 3 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem C. Clock
Input file: clock.in
Output file: clock.out

One famous Russian architect plans to build a new monumental construction. It will be a huge clock
that indicates the time from the beginning of the universe.

The face of this clock contains hands, moving at constant speeds. They are numbered from 1 to n from
the fastest to the slowest one. The fastest hand makes one revolution per minute (60 seconds). Each next
hand moves slower than previous, the (i + 1)-th hand makes one revolution when the i-th hand makes di

revolutions.

The setting mechanism of this clock is very simple. You can take a hand by the handle, located on its
end, and move it in any direction. When you move the hand, slower hands are moving in proportion
to their usual speeds, and faster hands are not moving. Remember that hands are huge, so setting this
clock is a hard job.

Consider an example with three hands: a second hand, a minute hand, and an hour hand. Their lengths
are 5, 15 and 10 meters respectively. You want to set the clock from 2:30 to 6:00 (fig. 1). The easiest
way to do it is to rotate the minute hand 180◦ clockwise, and then move the hour hand 90◦ clockwise.
The total distance you moved the handles of the hands is approximately 62.83 meters.

Fig. 1. Setting clock from 2:30 to 6:00.

Your task is to write a program that finds the way to set the clock that minimizes the total distance you
have to move the handles.

Input
The first line of the input file contains one integer n — the number of hands (0 < n ≤ 50). The second
line contains n − 1 integer numbers d1, d2, . . . , dn−1 (2 ≤ di ≤ 106). The third line contains n integer
numbers l1, l2, . . . , ln (1 ≤ li ≤ 106) — lengths of clock hands. Next two lines contain two non-negative
integer numbers (one number per line): time indicated by the clock and the actual time that should be
set. Both times are measured in seconds from the beginning of the universe and are less than 263.

Output
Print the minimal possible total distance you have to move the handles. The answer must be precise to
at least 4 digits after decimal point.

Sample input and output

clock.in clock.out
3
60 12
5 15 10
52200
453600

62.831853072

Page 4 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem D. Drive through MegaCity

Input file: drive.in
Output file: drive.out

MegaCity of the future is a rectangular grid of streets. Each intersection has integer Cartesian coordinates
x and y. To get from intersection a with coordinates xa, ya to intersection b with coordinates xb, yb you
need to drive exactly |xa−xb|+ |ya−yb| blocks. Usually, it takes 10 time units to drive one block, so one
can easily compute the time it takes to get from a to b. However, traffic jams that occur in MegaCity
turn estimation of minimal driving time into a complex problem that you have to solve.

Traffic jams in MegaCity affect a rectangular area that is specified by coordinates of its bottom-left and
top-right corners. The time to travel one block in the traffic jam is specified. All streets that are strictly
inside the rectangular region are affected by the traffic jam. Sometimes, it is better to drive around the
traffic jams to save time, but sometimes it is better to drive through some traffic jams as shown in the
example — 17 blocks are driven outside of traffic jams, taking 10 time units per block, and 2 blocks in
the light traffic jam with 11 time units per block.

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

a

b

Input
The first line of the input file contains four integer numbers xa, ya, xb, and yb — coordinates of the start
and finish intersections. The second line of the input file contains a single integer number n (0 ≤ n ≤ 1000)
which specifies the number of traffic jams. The following n lines describe traffic jams. Each traffic jam is
described by five integer numbers x1,i, y1,i, x2,i, y2,i and ti, where first four numbers are coordinates of
the bottom-left and top-right corners of the jammed area (x1,i < x2,i, y1,i < y2,i), and ti (10 < ti ≤ 108)
is the time it takes to travel one block inside this traffic jam. All coordinates in the input file are from 0
to 108 inclusive. Areas of traffic jams neither intersect nor touch each other. Start and finish points are
different and do not lie inside nor on the border of any traffic jam.

Output
Write to the output file a single integer — the minimal driving time from intersection a to intersection b.

Sample input and output
drive.in drive.out

1 6 15 3
4
2 1 3 7 44
5 2 10 4 33
8 5 11 9 22
12 1 14 8 11

192

Page 5 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem E. Exclusive Access
Input file: exclusive.in
Output file: exclusive.out

One important problem in concurrent programming is to ensure exclusive access to shared resources by
multiple threads. It is also known as Mutual Exclusion protocol. A code that needs to be protected
from concurrent execution is called critical section (CS). In order to coordinate access to CS, application
threads use a set of shared variables to send information to each other. These shared variables are
distinct from all the variables that are used by application code. In practice, mutual exclusion protocol
is implemented as two methods — enterCS and exitCS. When application needs to execute some code
in CS, it calls enterCS, then executes CS, then calls exitCS.

For theoretical analysis of mutual exclusion protocol one must consider running application as a whole.
Each thread of application is represented as an infinite loop that repeatedly performs some work unrelated
to CS, which is called non-critical section (NCS), then calls enterCS, then executes CS, then calls exitCS,
then the loop repeats. The code inside NCS and CS is not relevant; it is considered to perform no
operations related to the protocol and does not modify shared variables used by the protocol.

We consider a system with two concurrently running threads. Threads use a set of shared one-bit variables
to implement mutual exclusion protocol. Each variable can store a value of zero or one that can be read
or written by a single instruction. Shared variables are initialized to zero. Each thread has a local
pointer to the instruction (IP) that it is going to execute next. Execution starts from the top of the code.
During each step of execution one of the threads is arbitrarily chosen, it executes one instruction, and
then changes its IP to the next instruction to execute. This infinite sequence of steps is called history. A
history is called legal if either both threads execute infinitely many steps or just one thread does, while
the other thread, having taken a finite number of steps, stops with IP at NCS.

The table below contains several algorithms in pseudo-code that attempt to implement mutual exclusion
protocol. In this pseudo-code id is 0 for the first thread and 1 for the second. Variables want [0], want [1],
and turn are shared between threads to implement mutual exclusion protocol. Lines marked with “+”
implement enterCS, lines marked with “-” implement exitCS. Lines NCS() and CS() are placeholders
for some code that works inside non-critical and critical sections respectively and is not relevant for this
problem.

Algorithm 1 Algorithm 2 Algorithm 3
loop forever
NCS()

+ loop while
+ (turn == 1 - id)
CS()

- turn <- (1 - id)
end loop

loop forever
NCS()

+ want[id] <- 1
+ loop while
+ (want[1 - id] == 1)

CS()
- want[id] <- 0
end loop

loop forever
NCS()

+ want[id] <- 1
+ turn <- (1 - id)
+ loop while
+ (want[1 - id] == 1 and
+ turn == 1 - id)

CS()
- want[id] <- 0
end loop

The task is to figure out if the given algorithm satisfies three important properties:
• The algorithm satisfies mutual exclusion if in any legal history CS is not executed concurrently by

two threads (that is, there is no step where IP of both threads is at CS).
• The algorithm satisfies deadlock freedom if any legal history has infinitely many executions of CS.
• The algorithm satisfies starvation freedom if in any legal history a thread that executes infinitely

many steps has infinitely many executions of CS.

The property of mutual exclusion is trivial. The algorithm that simply loops forever doing nothing will
satisfy it. The sample algorithms above all satisfy mutual exclusion, but the first two fail to achieve
deadlock freedom. The algorithm 3 (originally created by Gary Peterson) satisfies all three properties.

Page 6 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Input
The input file starts with a line with two integer numbers — m1 and m2, where mi is the number of lines
of code for i-th thread (2 ≤ mi ≤ 9). It is followed by m1 lines with the code for the first thread and m2

lines with the code for the second thread.

The code for each thread contains one instruction per line. Instruction starts with an integer line number
from 1 to mi (lines are numbered in ascending order and are included to aid readability), followed by
instruction mnemonic, followed by a list of instruction arguments, all separated by spaces. The last
arguments of instruction represent line numbers of the next instructions to execute (NIP — from 1 to
mi). There are three variables shared between threads — A, B, and C. Instruction mnemonics are:

• NCS — non-critical section placeholder. Its single argument is NIP.

• CS — critical section placeholder. Its single argument is NIP.

• SET — write value to the shared variable. It has three arguments v, x, and g, where v is the
variable to write (A, B, or C), x is the value to write (0 or 1), and g is NIP.

• TEST — read and test the value of the shared variable. It has three arguments v, g0, and g1 where
v is the variable to read (A, B, or C), g0 is NIP if the value of the variable is zero, and g1 is NIP if
the value of the variable is one.

NCS and CS appear in the code for each thread exactly once. The code may or may not represent a
simple loop, but is guaranteed to alternate executions of CS and NCS by one thread, that is, in every legal
history two executions of CS by one thread always have NCS execution by the same thread in between
and, vice versa, two executions of NCS by one thread have CS execution by the same thread in between.

Output
Write to the output file a string of three letters. Letters represent properties of mutual exclusion, deadlock
freedom, and starvation freedom. Write letter Y if the corresponding property is satisfied and N otherwise.

Sample input and output
Three samples below represent algorithms 1–3 from the problem statement.

exclusive.in exclusive.out
4 4
1 NCS 2
2 TEST C 3 2
3 CS 4
4 SET C 1 1
1 NCS 2
2 TEST C 2 3
3 CS 4
4 SET C 0 1

YNN

5 5
1 NCS 2
2 SET A 1 3
3 TEST B 4 3
4 CS 5
5 SET A 0 1
1 NCS 2
2 SET B 1 3
3 TEST A 4 3
4 CS 5
5 SET B 0 1

YNN

Page 7 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

exclusive.in exclusive.out
7 7
1 NCS 2
2 SET A 1 3
3 SET C 1 4
4 TEST B 6 5
5 TEST C 6 4
6 CS 7
7 SET A 0 1
1 NCS 2
2 SET B 1 3
3 SET C 0 4
4 TEST A 6 5
5 TEST C 4 6
6 CS 7
7 SET B 0 1

YYY

This is an algorithm (originally created by Leslie Lamport) that uses just two shared bits (A and B) and
satisfies mutual exclusion and deadlock freedom, but is not free from starvation.

exclusive.in exclusive.out
5 7
1 NCS 2
2 SET A 1 3
3 TEST B 4 3
4 CS 5
5 SET A 0 1
1 NCS 2
2 SET B 1 3
3 TEST A 6 4
4 SET B 0 5
5 TEST A 2 5
6 CS 7
7 SET B 0 1

YYN

There are two trivial algorithms. First one never executes CS nor NCS and thus guarantees mutual
exclusion, but does not have deadlock freedom, nor starvation freedom properties. Second one loops
between NCS and CS, thus fails to achieve mutual exclusion, but is free from deadlock and starvation.

exclusive.in exclusive.out
3 3
1 SET A 0 1
2 CS 2
3 NCS 3
1 TEST A 1 1
2 CS 2
3 NCS 3

YNN

2 2
1 CS 2
2 NCS 1
1 NCS 2
2 CS 1

NYY

Page 8 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem F. Fibonacci System

Input file: fibonacci.in
Output file: fibonacci.out

Little John studies numeral systems. After learning all about fixed-base systems, he became interested
in more unusual cases. Among those cases he found a Fibonacci system, which represents all natural
numbers in an unique way using only two digits: zero and one. But unlike usual binary scale of notation,
in the Fibonacci system you are not allowed to place two 1s in adjacent positions.

One can prove that if you have number N = anan−1 . . . a1F in Fibonacci system, its value is equal to
N = an ·Fn + an−1 ·Fn−1 + . . . + a1 ·F1, where Fk is a usual Fibonacci sequence defined by F0 = F1 = 1,
Fi = Fi−1 + Fi−2.

For example, first few natural numbers have the following unique representations in Fibonacci system:

1 = 1F

2 = 10F

3 = 100F

4 = 101F

5 = 1000F

6 = 1001F

7 = 1010F

John wrote a very long string (consider it infinite) consisting of consecutive representations of
natural numbers in Fibonacci system. For example, the first few digits of this string are
110100101100010011010. . .

He is very interested, how many times the digit 1 occurs in the N -th prefix of the string. Remember that
the N -th prefix of the string is just a string consisting of its first N characters.

Write a program which determines how many times the digit 1 occurs in N -th prefix of John’s string.

Input
The input file contains a single integer N (0 ≤ N ≤ 1015).

Output
Output a single integer — the number of 1s in N -th prefix of John’s string.

Sample input and output

fibonacci.in fibonacci.out
21 10

Page 9 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem G. Giant Screen
Input file: giant.in
Output file: giant.out

You are working in Advanced Computer Monitors (ACM), Inc. The company is building and selling
giant computer screens that are composed from multiple smaller screens. Your are responsible for design
of the screens for your customers.

Customers order screens of the specified horizontal and vertical resolution in pixels and a specified
horizontal and vertical size in millimeters. Your task is to design a screen that has a required resolution
in each dimension or more, and has required size in each dimension or more, with a minimal possible
price. The giant screen is always built as a grid of monitors of the same type. The total resolution, size,
and price of the resulting screen is simply the sum of resolutions, sizes, and prices of the screens it is
built from.

You have a choice of regular monitor types that you can order and you know their resolutions, sizes, and
prices. The screens of each type can be mounted both vertically and horizontally, but the whole giant
screen must be composed of the screens of the same type in the same orientation. You can use as many
screens of the chosen type as you need.

Input
The first line of the input file contains four integer numbers rh, rv, sh, and sv (all from 100 to 10 000
inclusive) — horizontal and vertical resolution and horizontal and vertical size of the screen you have to
build, respectively. The next line contains a single integer number n (1 ≤ n ≤ 100) — the number of
different screen types available to you. The next n lines contain descriptions of the available screen types.
Each description occupies one line and consists of five integer numbers — rh,i, rv,i, sh,i, sv,i, pi (all from
100 to 10 000 inclusive), where first four numbers are horizontal and vertical resolution and horizontal
and vertical size of i-th screen type, and pi is the price.

Output
Write to the output file a single integer — the minimal price of the specified giant screen.

Sample input and output

giant.in giant.out
1024 1024 300 300
3
1024 768 295 270 200
1280 1024 365 301 250
1280 800 350 270 210

250

2400 2000 800 700
3
1024 768 295 270 200
1280 1024 365 301 250
1280 800 350 270 210

1260

Page 10 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem H. Hell on the Markets
Input file: hell.in
Output file: hell.out

Most financial institutions had become insolvent during financial crisis and went bankrupt or were bought
by larger institutions, usually by banks. By the end of financial crisis of all the financial institutions only
two banks still continue to operate. Financial markets had remained closed throughout the crisis and
now regulators are gradually opening them. To prevent speculation and to gradually ramp up trading
they will initially allow trading in only one financial instrument and the volume of trading will be limited
to i contracts for i-th minute of market operation.

Two banks had decided to cooperate with the government to kick-start the market operation. The boards
of directors had agreed on trading volume for each minute of this first trading session. One bank will
be buying ai contracts (1 ≤ ai ≤ i) during i-th minute (1 ≤ i ≤ n), while the other one will be selling.
They do not really care whether to buy or to sell, and the outside observer will only see the volume ai

of contracts traded per minute. However, they do not want to take any extra risk and want to have no
position in the contract by the end of the trading session. Thus, if we define bi = 1 when the first bank
is buying and bi = −1 when the second one is buying (and the first one is selling), then the requirement
for the trading session is that

∑n
i=1 aibi = 0.

Your lucky team of three still works in the data center (due to the crisis, banks now share the data center
and its personnel) and your task is to find such bi or to report that this is impossible.

Input
The first line of the input file contains the single integer number n (1 ≤ n ≤ 100 000).

The second line of the input file contains n integer numbers — ai (1 ≤ ai ≤ i).

Output
The first line of the output file must contain “Yes” if the trading session with specified volumes is possible
and “No” otherwise. In the former case the second line must contain n numbers — bi.

Sample input and output

hell.in hell.out
4
1 2 3 4

Yes
1 -1 -1 1

4
1 2 3 3

No

Page 11 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem I. iSharp

Input file: isharp.in
Output file: isharp.out

You are developing a new fashionable language that is not quite unlike C, C++, and Java. Since your
language should become an object of art and fashion, you call it i# (spelled i-sharp). This name combines
all the modern naming trends and also hints at how smart you are.

Your language caters for a wide auditory of programmers and its type system includes arrays (denoted
with “[]”), references (denoted with “&”), and pointers (denoted with “*”). Those type constructors
can be freely combined in any order, so that a pointer to an array of references of references of integers
(denoted with “int&&[]*”) is a valid type.

Multiple variables in i# can be declared on a single line with a very convenient syntax where common
type of variables is given first, followed by a list of variables, each optionally followed by additional
variable-specific type constructors. For example, the following line:

int& a*[]&, b, c*;

declares variables a, b, and c with types “int&&[]*”, “int&”, and “int&*” correspondingly. Note, that
type constructors on the right-hand sides of variables in i# bind to variable and their order is reversed
when they are moved to the left-hand side next to type. Thus “int*& a” is equivalent to “int a&*”.

However, you discover that coding style with multiple variable declarations per line is confusing and is
outlawed in many corporate coding standards. You decide to get rid of it and refactor all existing i# code
to a single variable declaration per line and always specify type constructor next to the type it refers to
(instead of the right-hand side of variable). Your task it to write such refactoring tool.

Input
The input file contains a single line with a declaration of multiple variables in i#. The line starts with a
type name, followed by zero, one, or more type constructors, followed by a space, followed by one or more
variable descriptors separated by “,” (comma) and space, and terminated by “;” (semicolon). Each
variable descriptor contains variable name, followed by zero, one, or more type constructors.

Type name and variable names are distinct and consist of lowercase and uppercase English letters from
“a” to “z” or “A” to “Z”. The line contains at most 120 characters and does not contain any extra spaces.

Output
Write to the output file a line for each variable declared in the input file. For each variable write its
declaration on a single line in the same format as in the input file, but with all type constructors next to
its type. Separate type with all type constructors from a variable name by a single space. Do not write
any extra spaces.

Sample input and output

isharp.in isharp.out
int& a*[]&, b, c*; int&&[]* a;

int& b;
int&* c;

Double[][] Array[]; Double[][][] Array;

Page 12 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem J. Javanese Cryptoanalysis

Input file: javanese.in
Output file: javanese.out

Javanese is the language of the people in the Central and Eastern parts of the island of Java, Indonesia.

In 1926, a standard orthography using the English Alphabet was created for the Javanese language. This
writing system uses all letters from A to Z. The five letters A, E, I, O, and U are vowels, while all other
letters are consonants. In Javanese words vowels and consonants always alternate. This property is quite
useful when deciphering encrypted Javanese texts.

A text s consists of words, each word contains only capital letters. Let’s call text s legitimate if in each
word of s vowels and consonants alternate (no two vowels and no two consonants are located next to
each other).

A simple substitution cipher is applied to a text s. That is, a bijection f : A→ A is chosen, where A is
the set of capital letters. The encoded text t is obtained from s by substituting each letter c with f(c).

You’re given the encoded text t. Find any legitimate text s that can be encoded as t, or detect that there
is no such legitimate s.

Input
The input file contains the encoded text t, a list of words separated by spaces and/or line breaks. Each
word consists only of capital letters (A to Z).

The input file contains no more than 100 000 characters.

Output
If the text t cannot be an encoded legitimate text, output only one word impossible.

Otherwise, output any legitimate text s that can be encoded into t. Separate words of s with spaces
and/or line breaks. All letters in s should be capital.

Sample input and output

javanese.in javanese.out
O RISK LIP FOCUS LUCKY A CODE FOR VALID FILES

NEERC impossible

Page 13 of 14

ACM ICPC 2008–2009, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 26, 2008

Problem K. KINA Is Not Abbreviation
Input file: kina.in
Output file: kina.out

When introducing new terms consisting of several words, it is useful to use abbreviations. An abbreviation
is a word that consists of the first letters of several consecutive words.

An abbreviation is called unambiguous if the following two conditions are satisfied:
• It corresponds to exactly one sequence of words in a given text (although this sequence can appear

in the text more than once);
• It does not appear in the text by itself.

For example, in the text “A recursive acronym KINA means "KINA is not abbreviation"”, strings
“ARA” and “K” are unambiguous abbreviations, strings “A” and “KINA” are ambiguous abbreviations, and
strings “RAA” and “KNA” are not abbreviations.

To introduce an abbreviation in a text, it is placed in parentheses right after the sequence of words it
corresponds to. Future occurrences of this sequence of words can be replaced by the abbreviation. In
the example text above, introduction of the abbreviation “K” produces the following text: “A recursive
acronym KINA (K) means "K is not abbreviation"”.

If two occurrences of a sequence of words overlap, only one of them can be replaced by the abbreviation.
Words in a sequence are separated by one or more non-alphabetic characters. Comparison of words is
case-insensitive. For example, “i18n” is an occurrence of the word sequence “I n”.

The effectiveness of an abbreviation is the decrease in the number of letters after introduction of this
abbreviation. Only letters are taken into account; spaces, parentheses and all other non-alphabetical
characters do not count.

Given a text, find an unambiguous abbreviation with the maximum effectiveness.

Input
The input file contains a text with at most 4 000 characters. The text contains only characters with
ASCII codes 32 (space) to 126 (“~”), 13 (carriage return), and 10 (line feed).

Output
If there is no unambiguous abbreviation with positive effectiveness, then the output file should contain
the single number 0.

Otherwise, the first line of the output file should contain the effectiveness of the optimal abbreviation.
The second line should contain the unambiguous abbreviation itself. If there are multiple unambiguous
abbreviations with the maximum effectiveness, output any one of them.

Sample input and output

kina.in kina.out
This problem name is "KINA is not abbreviation".
Once again: KINA is not abbreviation.

11
NA

To be or not to be: that is the question. 0

Here is the chorus of the song "Jingle Bells":
Jingle bells, jingle bells,
Jingle all the way;
Oh what fun it is to ride
In a one-horse open sleigh.

16
JB

In the first example, the optimal abbreviations are “NA” and “INA”.
In the third example, the optimal abbreviations are “JB” and “BJ”.

Page 14 of 14

